Babies fed soy-based formula have 13,000 to 22,000 times more estrogen compounds in their blood than babies fed milk-based formula. Infants exclusively fed soy formula receive the estrogenic equivalent of at least five birth control pills per day.

Male infants undergo a testosterone surge during the first few months of life, when testosterone levels may be as high as those of an adult male. During this period, baby boys are programmed to express male characteristics after puberty, not only in the development of their sexual organs and other masculine physical traits, but also in setting patterns in the brain characteristic of male behavior.

In animals, studies indicate that phytoestrogens in soy are powerful endocrine disruptors. Soy infant feeding—which floods the bloodstream with female hormones that inhibit testosterone—cannot be ignored as a possible cause of disrupted development patterns in boys, including learning disabilities and attention deficit disorder. Male children exposed to DES, a synthetic estrogen, had testes smaller than normal on maturation and infant marmoset monkeys fed soy isoflavones had a reduction in testosterone levels up to 70 percent compared to milk-fed controls.

Almost 15 percent of white girls and 50 percent of African-American girls show signs of puberty, such as breast development and pubic hair, before the age of eight. Some girls are showing sexual development before the age of three. Premature development of girls has been linked to the use of soy formula and exposure to environmental estrogen-mimickers such as PCBs and DDE.

Intake of phytoestrogens even at moderate levels during pregnancy can have adverse affects on the developing fetus and the timing of puberty later in life.

High levels of phytic acid in soy reduce assimilation of calcium, magnesium, copper, iron and zinc. Phytic acid in soy is not neutralized by ordinary preparation methods such as soaking, sprouting and long, slow cooking, but only with long fermentation. High phytate diets have caused growth problems in children.

Trypsin inhibitors in soy interfere with protein digestion and may cause pancreatic disorders. In test animals, soy containing trypsin inhibitors caused stunted growth.

Soy phytoestrogens disrupt endocrine function and have the potential to cause infertility and to promote breast cancer in adult women.

Soy phytoestrogens are potent antithyroid agents that cause hypothyroidism and may cause thyroid cancer. In infants, consumption of soy formula has been linked to autoimmune thyroid disease.

Vitamin B₁₂ analogs in soy are not absorbed and actually increase the body’s requirement for B₁₂.

Soy foods increase the body’s requirement for vitamin D. Toxic synthetic vitamin D₂ is added to soy milk.

Fragile proteins are over-denatured during high temperature processing to make soy protein isolate and textured vegetable protein.

Processing of soy protein results in the formation of toxic lysinoalanine and highly carcinogenic nitrosamines.

Free glutamic acid or MSG, a potent neurotoxin, is formed during soy food processing and additional amounts are added to many soy foods to mask soy’s unpleasant taste.

Soy foods contain high levels of aluminum, which is toxic to the nervous system and the kidneys.
Myths and Truths About Soy

Myth: Use of soy as a food dates back many thousands of years.
Truth: Soy was first used as a food during the late Chou dynasty (1134-246 BC), only after the Chinese learned to ferment soybeans to make foods like tempeh, natto and tamari.

Myth: Asians consume large amounts of soy foods.
Truth: Average consumption of soy foods in China is 10 grams (about 2 teaspoons) per day and 30 to 60 grams (1-2 tablespoons) in Japan. Asians consume soy foods in small amounts as a condiment, and not as a replacement for animal foods.

Myth: Modern soy foods confer the same health benefits as traditionally fermented soy foods.
Truth: Like all legumes, soybeans are deficient in sulfur-containing amino acids methionine and cystine. In addition, modern processing denatures fragile lysine.

Myth: Soy foods contain trypsin inhibitors that denature proteins processed in a way that denatures proteins and increases levels of carcinogens.
Truth: Soy foods can cause deficiencies in calcium and vitamin D, both needed for healthy bones. Calcium from bone broths and vitamin D from seafood, lard and organ meats prevent osteoporosis in Asian countries—not soy foods.

Myth: Soy foods can prevent osteoporosis.
Truth: Soy foods can cause deficiencies in calcium and vitamin D, both needed for healthy bones.

Myth: Modern soy foods protect against many types of cancer.
Truth: A British government report concluded that there is little evidence that soy foods protect against breast cancer or any other form of cancer. In fact, soy foods may result in an increased risk of cancer.

Myth: Soy isoflavones are phyto-endocrine disrupters. At dietary levels, they can prevent ovulation and stimulate the growth of cancer cells. As little as four tablespoons of soy per day can result in hypothyroidism with symptoms of lethargy, constipation, weight gain and fatigue.

Myth: Soy estrogens (isoflavones) are good for you.
Truth: Soy isoflavones and soy protein isolate have GRAS (Generally Recognized as Safe) status.

Myth: Soybeans are good for the environment.
Truth: Archer Daniels Midland recently withdrew its application to the FDA for GRAS status for soy isoflavones following an outpouring of protest from the scientific community. The FDA never approved GRAS status for soy protein isolate because of concern regarding the presence of toxins and carcinogens in processed soy.

Myth: Soy beans are good for developing nations.
Truth: In third world countries, soybeans replace traditional crops and transfer the value-added of processing from the local population to multinational corporations.

Your tax-deductible contributions to Soy Alert! help pay for education and legal expenses. Make checks payable to the Weston A. Price Foundation.

For further information and references, see www.soyonlineservice.co.nz or westonaprice.org/soy/dangerisoflavones.html and westonaprice.org/soy/soy_studies.html